MakeItFrom.com
Menu (ESC)

C96200 Copper-nickel vs. AWS E310Mo

C96200 copper-nickel belongs to the copper alloys classification, while AWS E310Mo belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C96200 copper-nickel and the bottom bar is AWS E310Mo.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 23
34
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 46
80
Tensile Strength: Ultimate (UTS), MPa 350
620

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Melting Completion (Liquidus), °C 1150
1420
Melting Onset (Solidus), °C 1100
1370
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 45
14
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
28
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 3.8
5.1
Embodied Energy, MJ/kg 58
71
Embodied Water, L/kg 300
210

Common Calculations

Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11
22
Strength to Weight: Bending, points 13
20
Thermal Diffusivity, mm2/s 13
3.7
Thermal Shock Resistance, points 12
15

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.12
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 83.6 to 90
0 to 0.75
Iron (Fe), % 1.0 to 1.8
42.8 to 52
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
1.0 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 9.0 to 11
20 to 22
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.030
Residuals, % 0 to 0.5
0