MakeItFrom.com
Menu (ESC)

C96200 Copper-nickel vs. EN 1.3963 Alloy

C96200 copper-nickel belongs to the copper alloys classification, while EN 1.3963 alloy belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96200 copper-nickel and the bottom bar is EN 1.3963 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 23
29
Poisson's Ratio 0.34
0.3
Shear Modulus, GPa 46
72
Tensile Strength: Ultimate (UTS), MPa 350
440
Tensile Strength: Yield (Proof), MPa 190
310

Thermal Properties

Latent Heat of Fusion, J/g 220
270
Melting Completion (Liquidus), °C 1150
1430
Melting Onset (Solidus), °C 1100
1390
Specific Heat Capacity, J/kg-K 390
460
Thermal Expansion, µm/m-K 17
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
25
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 3.8
4.8
Embodied Energy, MJ/kg 58
66
Embodied Water, L/kg 300
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
260
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 11
15
Strength to Weight: Bending, points 13
16
Thermal Shock Resistance, points 12
110

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.050
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 83.6 to 90
0
Iron (Fe), % 1.0 to 1.8
60.5 to 64.9
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0 to 0.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 9.0 to 11
35 to 37
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.020
0.1 to 0.2
Residuals, % 0 to 0.5
0