MakeItFrom.com
Menu (ESC)

C96200 Copper-nickel vs. EN 1.5113 Steel

C96200 copper-nickel belongs to the copper alloys classification, while EN 1.5113 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C96200 copper-nickel and the bottom bar is EN 1.5113 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 23
11 to 18
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 46
72
Tensile Strength: Ultimate (UTS), MPa 350
580 to 900
Tensile Strength: Yield (Proof), MPa 190
320 to 770

Thermal Properties

Latent Heat of Fusion, J/g 220
260
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1150
1450
Melting Onset (Solidus), °C 1100
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 45
52
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.4
Embodied Energy, MJ/kg 58
19
Embodied Water, L/kg 300
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
91 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 150
270 to 1570
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11
21 to 32
Strength to Weight: Bending, points 13
20 to 27
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 12
17 to 26

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.1
Copper (Cu), % 83.6 to 90
0
Iron (Fe), % 1.0 to 1.8
97 to 97.5
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
1.6 to 1.8
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
0.9 to 1.1
Sulfur (S), % 0 to 0.020
0 to 0.025
Residuals, % 0 to 0.5
0