MakeItFrom.com
Menu (ESC)

C96200 Copper-nickel vs. EN 1.5422 Steel

C96200 copper-nickel belongs to the copper alloys classification, while EN 1.5422 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C96200 copper-nickel and the bottom bar is EN 1.5422 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 23
26
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 350
520
Tensile Strength: Yield (Proof), MPa 190
270

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 220
410
Melting Completion (Liquidus), °C 1150
1460
Melting Onset (Solidus), °C 1100
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 45
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.7
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 3.8
1.6
Embodied Energy, MJ/kg 58
22
Embodied Water, L/kg 300
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
200
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11
18
Strength to Weight: Bending, points 13
18
Thermal Diffusivity, mm2/s 13
10
Thermal Shock Resistance, points 12
15

Alloy Composition

Carbon (C), % 0 to 0.1
0.15 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 83.6 to 90
0 to 0.3
Iron (Fe), % 1.0 to 1.8
96.3 to 98.6
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0.8 to 1.2
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 9.0 to 11
0 to 0.4
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.020
Vanadium (V), % 0
0 to 0.050
Residuals, % 0 to 0.5
0