MakeItFrom.com
Menu (ESC)

C96200 Copper-nickel vs. Grade C-5 Titanium

C96200 copper-nickel belongs to the copper alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C96200 copper-nickel and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 23
6.7
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 46
40
Tensile Strength: Ultimate (UTS), MPa 350
1000
Tensile Strength: Yield (Proof), MPa 190
940

Thermal Properties

Latent Heat of Fusion, J/g 220
410
Maximum Temperature: Mechanical, °C 220
340
Melting Completion (Liquidus), °C 1150
1610
Melting Onset (Solidus), °C 1100
1560
Specific Heat Capacity, J/kg-K 390
560
Thermal Conductivity, W/m-K 45
7.1
Thermal Expansion, µm/m-K 17
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
36
Density, g/cm3 8.9
4.4
Embodied Carbon, kg CO2/kg material 3.8
38
Embodied Energy, MJ/kg 58
610
Embodied Water, L/kg 300
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
66
Resilience: Unit (Modulus of Resilience), kJ/m3 150
4200
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 11
63
Strength to Weight: Bending, points 13
50
Thermal Diffusivity, mm2/s 13
2.9
Thermal Shock Resistance, points 12
71

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.1
0 to 0.1
Copper (Cu), % 83.6 to 90
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 1.0 to 1.8
0 to 0.4
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 9.0 to 11
0 to 0.050
Niobium (Nb), % 0 to 1.0
0
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4