MakeItFrom.com
Menu (ESC)

C96200 Copper-nickel vs. SAE-AISI 1137 Steel

C96200 copper-nickel belongs to the copper alloys classification, while SAE-AISI 1137 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96200 copper-nickel and the bottom bar is SAE-AISI 1137 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 23
11 to 17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 350
700 to 760
Tensile Strength: Yield (Proof), MPa 190
370 to 650

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1150
1460
Melting Onset (Solidus), °C 1100
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 45
51
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
10
Electrical Conductivity: Equal Weight (Specific), % IACS 11
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.9
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.4
Embodied Energy, MJ/kg 58
19
Embodied Water, L/kg 300
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
81 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 150
360 to 1130
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11
25 to 27
Strength to Weight: Bending, points 13
22 to 24
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 12
21 to 23

Alloy Composition

Carbon (C), % 0 to 0.1
0.32 to 0.39
Copper (Cu), % 83.6 to 90
0
Iron (Fe), % 1.0 to 1.8
97.8 to 98.3
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
1.4 to 1.7
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0.080 to 0.13
Residuals, % 0 to 0.5
0