MakeItFrom.com
Menu (ESC)

C96200 Copper-nickel vs. SAE-AISI 4340 Steel

C96200 copper-nickel belongs to the copper alloys classification, while SAE-AISI 4340 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C96200 copper-nickel and the bottom bar is SAE-AISI 4340 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 23
12 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 350
690 to 1280
Tensile Strength: Yield (Proof), MPa 190
470 to 1150

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 220
430
Melting Completion (Liquidus), °C 1150
1460
Melting Onset (Solidus), °C 1100
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 45
44
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
3.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.7
Embodied Energy, MJ/kg 58
22
Embodied Water, L/kg 300
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
79 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 150
590 to 3490
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11
24 to 45
Strength to Weight: Bending, points 13
22 to 33
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 12
20 to 38

Alloy Composition

Carbon (C), % 0 to 0.1
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 83.6 to 90
0
Iron (Fe), % 1.0 to 1.8
95.1 to 96.3
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 9.0 to 11
1.7 to 2.0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.5
0.15 to 0.35
Sulfur (S), % 0 to 0.020
0 to 0.040
Residuals, % 0 to 0.5
0