MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. 5252 Aluminum

C96300 copper-nickel belongs to the copper alloys classification, while 5252 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is 5252 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
68 to 75
Elastic (Young's, Tensile) Modulus, GPa 130
68
Elongation at Break, % 11
4.5 to 11
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 49
25
Tensile Strength: Ultimate (UTS), MPa 580
230 to 290
Tensile Strength: Yield (Proof), MPa 430
170 to 240

Thermal Properties

Latent Heat of Fusion, J/g 230
400
Maximum Temperature: Mechanical, °C 240
180
Melting Completion (Liquidus), °C 1200
650
Melting Onset (Solidus), °C 1150
610
Specific Heat Capacity, J/kg-K 400
910
Thermal Conductivity, W/m-K 37
140
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
34
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
120

Otherwise Unclassified Properties

Base Metal Price, % relative 42
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 5.1
8.7
Embodied Energy, MJ/kg 76
160
Embodied Water, L/kg 290
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 720
210 to 430
Stiffness to Weight: Axial, points 8.2
14
Stiffness to Weight: Bending, points 19
51
Strength to Weight: Axial, points 18
23 to 30
Strength to Weight: Bending, points 17
31 to 36
Thermal Diffusivity, mm2/s 10
57
Thermal Shock Resistance, points 20
10 to 13

Alloy Composition

Aluminum (Al), % 0
96.6 to 97.8
Carbon (C), % 0 to 0.15
0
Copper (Cu), % 72.3 to 80.8
0 to 0.1
Iron (Fe), % 0.5 to 1.5
0 to 0.1
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0.25 to 1.5
0 to 0.1
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.080
Sulfur (S), % 0 to 0.020
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1