MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. 7022 Aluminum

C96300 copper-nickel belongs to the copper alloys classification, while 7022 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is 7022 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
70
Elongation at Break, % 11
6.3 to 8.0
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 49
26
Tensile Strength: Ultimate (UTS), MPa 580
490 to 540
Tensile Strength: Yield (Proof), MPa 430
390 to 460

Thermal Properties

Latent Heat of Fusion, J/g 230
380
Maximum Temperature: Mechanical, °C 240
200
Melting Completion (Liquidus), °C 1200
640
Melting Onset (Solidus), °C 1150
480
Specific Heat Capacity, J/kg-K 400
870
Thermal Conductivity, W/m-K 37
140
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
21
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
65

Otherwise Unclassified Properties

Base Metal Price, % relative 42
10
Density, g/cm3 8.9
2.9
Embodied Carbon, kg CO2/kg material 5.1
8.5
Embodied Energy, MJ/kg 76
150
Embodied Water, L/kg 290
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
29 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 720
1100 to 1500
Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
47
Strength to Weight: Axial, points 18
47 to 51
Strength to Weight: Bending, points 17
47 to 50
Thermal Diffusivity, mm2/s 10
54
Thermal Shock Resistance, points 20
21 to 23

Alloy Composition

Aluminum (Al), % 0
87.9 to 92.4
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0
0.1 to 0.3
Copper (Cu), % 72.3 to 80.8
0.5 to 1.0
Iron (Fe), % 0.5 to 1.5
0 to 0.5
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0
2.6 to 3.7
Manganese (Mn), % 0.25 to 1.5
0.1 to 0.4
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
4.3 to 5.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15