MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. 772.0 Aluminum

C96300 copper-nickel belongs to the copper alloys classification, while 772.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is 772.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
69
Elongation at Break, % 11
6.3 to 8.4
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 49
26
Tensile Strength: Ultimate (UTS), MPa 580
260 to 320
Tensile Strength: Yield (Proof), MPa 430
220 to 250

Thermal Properties

Latent Heat of Fusion, J/g 230
380
Maximum Temperature: Mechanical, °C 240
180
Melting Completion (Liquidus), °C 1200
630
Melting Onset (Solidus), °C 1150
580
Specific Heat Capacity, J/kg-K 400
870
Thermal Conductivity, W/m-K 37
150
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
35
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
110

Otherwise Unclassified Properties

Base Metal Price, % relative 42
9.5
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 5.1
8.0
Embodied Energy, MJ/kg 76
150
Embodied Water, L/kg 290
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
16 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 720
350 to 430
Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
46
Strength to Weight: Axial, points 18
25 to 31
Strength to Weight: Bending, points 17
31 to 36
Thermal Diffusivity, mm2/s 10
58
Thermal Shock Resistance, points 20
11 to 14

Alloy Composition

Aluminum (Al), % 0
91.2 to 93.2
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0
0.060 to 0.2
Copper (Cu), % 72.3 to 80.8
0 to 0.1
Iron (Fe), % 0.5 to 1.5
0 to 0.15
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0.25 to 1.5
0 to 0.1
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15