MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. ASTM A182 Grade F3V

C96300 copper-nickel belongs to the copper alloys classification, while ASTM A182 grade F3V belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is ASTM A182 grade F3V.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
210
Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 11
20
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 49
74
Tensile Strength: Ultimate (UTS), MPa 580
660
Tensile Strength: Yield (Proof), MPa 430
470

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 240
470
Melting Completion (Liquidus), °C 1200
1470
Melting Onset (Solidus), °C 1150
1430
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 37
39
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 42
4.2
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.1
2.3
Embodied Energy, MJ/kg 76
33
Embodied Water, L/kg 290
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
120
Resilience: Unit (Modulus of Resilience), kJ/m3 720
590
Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
23
Strength to Weight: Bending, points 17
21
Thermal Diffusivity, mm2/s 10
10
Thermal Shock Resistance, points 20
19

Alloy Composition

Boron (B), % 0
0.0010 to 0.0030
Carbon (C), % 0 to 0.15
0.050 to 0.18
Chromium (Cr), % 0
2.8 to 3.2
Copper (Cu), % 72.3 to 80.8
0
Iron (Fe), % 0.5 to 1.5
94.4 to 95.7
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.020
0 to 0.020
Titanium (Ti), % 0
0.015 to 0.035
Vanadium (V), % 0
0.2 to 0.3
Residuals, % 0 to 0.5
0