MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. ASTM A387 Grade 22L Class 1

C96300 copper-nickel belongs to the copper alloys classification, while ASTM A387 grade 22L class 1 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is ASTM A387 grade 22L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
150
Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 11
20
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 49
74
Tensile Strength: Ultimate (UTS), MPa 580
500
Tensile Strength: Yield (Proof), MPa 430
230

Thermal Properties

Latent Heat of Fusion, J/g 230
260
Maximum Temperature: Mechanical, °C 240
460
Melting Completion (Liquidus), °C 1200
1470
Melting Onset (Solidus), °C 1150
1430
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 37
40
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 42
3.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.1
1.7
Embodied Energy, MJ/kg 76
23
Embodied Water, L/kg 290
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
83
Resilience: Unit (Modulus of Resilience), kJ/m3 720
140
Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 10
11
Thermal Shock Resistance, points 20
14

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.1
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 72.3 to 80.8
0
Iron (Fe), % 0.5 to 1.5
95.2 to 96.8
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.025
Residuals, % 0 to 0.5
0