MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. AWS E110C-K3

C96300 copper-nickel belongs to the copper alloys classification, while AWS E110C-K3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is AWS E110C-K3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 11
17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 49
73
Tensile Strength: Ultimate (UTS), MPa 580
870
Tensile Strength: Yield (Proof), MPa 430
760

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Melting Completion (Liquidus), °C 1200
1460
Melting Onset (Solidus), °C 1150
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 37
48
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
7.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 42
3.4
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
1.7
Embodied Energy, MJ/kg 76
23
Embodied Water, L/kg 290
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
140
Resilience: Unit (Modulus of Resilience), kJ/m3 720
1550
Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
31
Strength to Weight: Bending, points 17
26
Thermal Diffusivity, mm2/s 10
13
Thermal Shock Resistance, points 20
26

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.15
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 72.3 to 80.8
0 to 0.35
Iron (Fe), % 0.5 to 1.5
92.6 to 98.5
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 18 to 22
0.5 to 2.5
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.8
Sulfur (S), % 0 to 0.020
0 to 0.025
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5