MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. EN 1.0038 Steel

C96300 copper-nickel belongs to the copper alloys classification, while EN 1.0038 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is EN 1.0038 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
110 to 120
Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 11
23 to 25
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 49
73
Tensile Strength: Ultimate (UTS), MPa 580
380 to 430
Tensile Strength: Yield (Proof), MPa 430
200 to 220

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 240
400
Melting Completion (Liquidus), °C 1200
1460
Melting Onset (Solidus), °C 1150
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 37
49
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 42
2.1
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
1.4
Embodied Energy, MJ/kg 76
19
Embodied Water, L/kg 290
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
72 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 720
110 to 130
Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
13 to 15
Strength to Weight: Bending, points 17
15 to 16
Thermal Diffusivity, mm2/s 10
13
Thermal Shock Resistance, points 20
12 to 13

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.23
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 72.3 to 80.8
0 to 0.6
Iron (Fe), % 0.5 to 1.5
97.1 to 100
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 18 to 22
0 to 0.3
Niobium (Nb), % 0.5 to 1.5
0
Nitrogen (N), % 0
0 to 0.014
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 0.55
Sulfur (S), % 0 to 0.020
0 to 0.045
Residuals, % 0 to 0.5
0