MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. EN 1.4008 Stainless Steel

C96300 copper-nickel belongs to the copper alloys classification, while EN 1.4008 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is EN 1.4008 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 11
17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 49
76
Tensile Strength: Ultimate (UTS), MPa 580
670
Tensile Strength: Yield (Proof), MPa 430
500

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 240
760
Melting Completion (Liquidus), °C 1200
1450
Melting Onset (Solidus), °C 1150
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 37
25
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 42
8.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
2.1
Embodied Energy, MJ/kg 76
30
Embodied Water, L/kg 290
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
100
Resilience: Unit (Modulus of Resilience), kJ/m3 720
630
Stiffness to Weight: Axial, points 8.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 17
22
Thermal Diffusivity, mm2/s 10
6.7
Thermal Shock Resistance, points 20
23

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.1
Chromium (Cr), % 0
12 to 13.5
Copper (Cu), % 72.3 to 80.8
0
Iron (Fe), % 0.5 to 1.5
81.8 to 86.8
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 0.5
Nickel (Ni), % 18 to 22
1.0 to 2.0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.025
Residuals, % 0 to 0.5
0