MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. EN 1.4062 Stainless Steel

C96300 copper-nickel belongs to the copper alloys classification, while EN 1.4062 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is EN 1.4062 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
200
Elongation at Break, % 11
23 to 34
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 49
79
Tensile Strength: Ultimate (UTS), MPa 580
770 to 800
Tensile Strength: Yield (Proof), MPa 430
530 to 600

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 240
1030
Melting Completion (Liquidus), °C 1200
1430
Melting Onset (Solidus), °C 1150
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 37
15
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 42
12
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 5.1
2.6
Embodied Energy, MJ/kg 76
37
Embodied Water, L/kg 290
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
170 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 720
690 to 910
Stiffness to Weight: Axial, points 8.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18
28 to 29
Strength to Weight: Bending, points 17
24 to 25
Thermal Diffusivity, mm2/s 10
4.0
Thermal Shock Resistance, points 20
21 to 22

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 0
21.5 to 24
Copper (Cu), % 72.3 to 80.8
0
Iron (Fe), % 0.5 to 1.5
69.3 to 77.3
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.45
Nickel (Ni), % 18 to 22
1.0 to 2.9
Niobium (Nb), % 0.5 to 1.5
0
Nitrogen (N), % 0
0.16 to 0.28
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.010
Residuals, % 0 to 0.5
0