MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. EN 1.4589 Stainless Steel

C96300 copper-nickel belongs to the copper alloys classification, while EN 1.4589 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is EN 1.4589 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
200
Elongation at Break, % 11
17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 49
77
Tensile Strength: Ultimate (UTS), MPa 580
650
Tensile Strength: Yield (Proof), MPa 430
440

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 240
810
Melting Completion (Liquidus), °C 1200
1450
Melting Onset (Solidus), °C 1150
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 37
25
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 42
9.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
2.4
Embodied Energy, MJ/kg 76
34
Embodied Water, L/kg 290
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
96
Resilience: Unit (Modulus of Resilience), kJ/m3 720
490
Stiffness to Weight: Axial, points 8.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18
23
Strength to Weight: Bending, points 17
22
Thermal Diffusivity, mm2/s 10
6.7
Thermal Shock Resistance, points 20
23

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 0
13.5 to 15.5
Copper (Cu), % 72.3 to 80.8
0
Iron (Fe), % 0.5 to 1.5
78.2 to 85
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 1.2
Nickel (Ni), % 18 to 22
1.0 to 2.5
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0
0.3 to 0.5
Residuals, % 0 to 0.5
0