MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. EN 1.4655 Stainless Steel

C96300 copper-nickel belongs to the copper alloys classification, while EN 1.4655 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is EN 1.4655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
200
Elongation at Break, % 11
23 to 25
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 49
78
Tensile Strength: Ultimate (UTS), MPa 580
720 to 730
Tensile Strength: Yield (Proof), MPa 430
450 to 480

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 240
1050
Melting Completion (Liquidus), °C 1200
1420
Melting Onset (Solidus), °C 1150
1370
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 37
15
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 42
15
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 5.1
2.9
Embodied Energy, MJ/kg 76
41
Embodied Water, L/kg 290
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 720
510 to 580
Stiffness to Weight: Axial, points 8.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18
26
Strength to Weight: Bending, points 17
23
Thermal Diffusivity, mm2/s 10
4.0
Thermal Shock Resistance, points 20
20

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 72.3 to 80.8
1.0 to 3.0
Iron (Fe), % 0.5 to 1.5
63.6 to 73.4
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 18 to 22
3.5 to 5.5
Niobium (Nb), % 0.5 to 1.5
0
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015
Residuals, % 0 to 0.5
0