MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. EN 1.4951 Stainless Steel

C96300 copper-nickel belongs to the copper alloys classification, while EN 1.4951 stainless steel belongs to the iron alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is EN 1.4951 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
170
Elastic (Young's, Tensile) Modulus, GPa 130
200
Elongation at Break, % 11
38
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 49
79
Tensile Strength: Ultimate (UTS), MPa 580
630
Tensile Strength: Yield (Proof), MPa 430
220

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 240
1100
Melting Completion (Liquidus), °C 1200
1410
Melting Onset (Solidus), °C 1150
1360
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 37
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 42
25
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.1
4.3
Embodied Energy, MJ/kg 76
61
Embodied Water, L/kg 290
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
190
Resilience: Unit (Modulus of Resilience), kJ/m3 720
130
Stiffness to Weight: Axial, points 8.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18
22
Strength to Weight: Bending, points 17
21
Thermal Diffusivity, mm2/s 10
3.9
Thermal Shock Resistance, points 20
14

Alloy Composition

Carbon (C), % 0 to 0.15
0.040 to 0.080
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 72.3 to 80.8
0
Iron (Fe), % 0.5 to 1.5
49.1 to 57
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0 to 2.0
Nickel (Ni), % 18 to 22
19 to 22
Niobium (Nb), % 0.5 to 1.5
0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.7
Sulfur (S), % 0 to 0.020
0 to 0.015
Residuals, % 0 to 0.5
0