MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. EN 1.5525 Steel

C96300 copper-nickel belongs to the copper alloys classification, while EN 1.5525 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is EN 1.5525 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
130 to 180
Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 11
11 to 21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 49
73
Tensile Strength: Ultimate (UTS), MPa 580
440 to 1440
Tensile Strength: Yield (Proof), MPa 430
300 to 490

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 240
400
Melting Completion (Liquidus), °C 1200
1460
Melting Onset (Solidus), °C 1150
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 37
50
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 42
1.9
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
1.4
Embodied Energy, MJ/kg 76
19
Embodied Water, L/kg 290
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
44 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 720
240 to 640
Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
16 to 51
Strength to Weight: Bending, points 17
16 to 36
Thermal Diffusivity, mm2/s 10
13
Thermal Shock Resistance, points 20
13 to 42

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0 to 0.15
0.18 to 0.23
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 72.3 to 80.8
0 to 0.25
Iron (Fe), % 0.5 to 1.5
97.7 to 98.9
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0.9 to 1.2
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.020
0 to 0.025
Residuals, % 0 to 0.5
0