MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. EN 1.6553 Steel

C96300 copper-nickel belongs to the copper alloys classification, while EN 1.6553 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is EN 1.6553 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
210 to 240
Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 11
19 to 21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 49
73
Tensile Strength: Ultimate (UTS), MPa 580
710 to 800
Tensile Strength: Yield (Proof), MPa 430
470 to 670

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 240
420
Melting Completion (Liquidus), °C 1200
1460
Melting Onset (Solidus), °C 1150
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 37
39
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 42
2.7
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
1.6
Embodied Energy, MJ/kg 76
21
Embodied Water, L/kg 290
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
130 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 720
600 to 1190
Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
25 to 28
Strength to Weight: Bending, points 17
23 to 24
Thermal Diffusivity, mm2/s 10
10
Thermal Shock Resistance, points 20
21 to 23

Alloy Composition

Carbon (C), % 0 to 0.15
0.23 to 0.28
Chromium (Cr), % 0
0.4 to 0.8
Copper (Cu), % 72.3 to 80.8
0 to 0.3
Iron (Fe), % 0.5 to 1.5
95.6 to 98.2
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 18 to 22
0.4 to 0.8
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.8
Sulfur (S), % 0 to 0.020
0 to 0.025
Vanadium (V), % 0
0 to 0.030
Residuals, % 0 to 0.5
0