MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. EN 1.6579 Steel

C96300 copper-nickel belongs to the copper alloys classification, while EN 1.6579 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is EN 1.6579 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
260 to 290
Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 11
11 to 14
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 49
73
Tensile Strength: Ultimate (UTS), MPa 580
850 to 980
Tensile Strength: Yield (Proof), MPa 430
600 to 910

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 240
440
Melting Completion (Liquidus), °C 1200
1460
Melting Onset (Solidus), °C 1150
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 37
39
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 42
3.7
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
1.7
Embodied Energy, MJ/kg 76
22
Embodied Water, L/kg 290
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
100 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 720
950 to 2210
Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
30 to 35
Strength to Weight: Bending, points 17
25 to 28
Thermal Diffusivity, mm2/s 10
11
Thermal Shock Resistance, points 20
25 to 29

Alloy Composition

Carbon (C), % 0 to 0.15
0.32 to 0.38
Chromium (Cr), % 0
1.4 to 1.7
Copper (Cu), % 72.3 to 80.8
0
Iron (Fe), % 0.5 to 1.5
94.2 to 96.1
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.35
Nickel (Ni), % 18 to 22
1.4 to 1.7
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.030
Residuals, % 0 to 0.5
0