MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. EN 1.6771 Steel

C96300 copper-nickel belongs to the copper alloys classification, while EN 1.6771 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is EN 1.6771 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
280 to 350
Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 11
8.0 to 8.7
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 49
73
Tensile Strength: Ultimate (UTS), MPa 580
930 to 1180
Tensile Strength: Yield (Proof), MPa 430
740 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 240
440
Melting Completion (Liquidus), °C 1200
1460
Melting Onset (Solidus), °C 1150
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 37
46
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 42
5.0
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.1
1.9
Embodied Energy, MJ/kg 76
25
Embodied Water, L/kg 290
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
75 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 720
1460 to 3450
Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
33 to 41
Strength to Weight: Bending, points 17
27 to 31
Thermal Diffusivity, mm2/s 10
13
Thermal Shock Resistance, points 20
27 to 35

Alloy Composition

Carbon (C), % 0 to 0.15
0.27 to 0.33
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 72.3 to 80.8
0
Iron (Fe), % 0.5 to 1.5
92.2 to 95
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0.6 to 1.0
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 18 to 22
3.0 to 4.0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.020
Residuals, % 0 to 0.5
0