MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. EN 1.7230 Steel

C96300 copper-nickel belongs to the copper alloys classification, while EN 1.7230 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is EN 1.7230 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
220 to 270
Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 11
11 to 12
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 49
73
Tensile Strength: Ultimate (UTS), MPa 580
720 to 910
Tensile Strength: Yield (Proof), MPa 430
510 to 740

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 240
420
Melting Completion (Liquidus), °C 1200
1460
Melting Onset (Solidus), °C 1150
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 37
44
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 42
2.4
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
1.5
Embodied Energy, MJ/kg 76
20
Embodied Water, L/kg 290
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
79 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 720
700 to 1460
Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
26 to 32
Strength to Weight: Bending, points 17
23 to 27
Thermal Diffusivity, mm2/s 10
12
Thermal Shock Resistance, points 20
21 to 27

Alloy Composition

Carbon (C), % 0 to 0.15
0.3 to 0.37
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 72.3 to 80.8
0
Iron (Fe), % 0.5 to 1.5
96.7 to 98.3
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0.5 to 0.8
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.030
Residuals, % 0 to 0.5
0