MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. Grade 28 Titanium

C96300 copper-nickel belongs to the copper alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
110
Elongation at Break, % 11
11 to 17
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 49
40
Tensile Strength: Ultimate (UTS), MPa 580
690 to 980
Tensile Strength: Yield (Proof), MPa 430
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 230
410
Maximum Temperature: Mechanical, °C 240
330
Melting Completion (Liquidus), °C 1200
1640
Melting Onset (Solidus), °C 1150
1590
Specific Heat Capacity, J/kg-K 400
550
Thermal Conductivity, W/m-K 37
8.3
Thermal Expansion, µm/m-K 16
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 42
36
Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 5.1
37
Embodied Energy, MJ/kg 76
600
Embodied Water, L/kg 290
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 720
1370 to 3100
Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 18
43 to 61
Strength to Weight: Bending, points 17
39 to 49
Thermal Diffusivity, mm2/s 10
3.4
Thermal Shock Resistance, points 20
47 to 66

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.15
0 to 0.080
Copper (Cu), % 72.3 to 80.8
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.5 to 1.5
0 to 0.25
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.5 to 1.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.020
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4