MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. SAE-AISI 4140 Steel

C96300 copper-nickel belongs to the copper alloys classification, while SAE-AISI 4140 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is SAE-AISI 4140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
200 to 310
Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 11
11 to 26
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 49
73
Tensile Strength: Ultimate (UTS), MPa 580
690 to 1080
Tensile Strength: Yield (Proof), MPa 430
590 to 990

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 240
420
Melting Completion (Liquidus), °C 1200
1460
Melting Onset (Solidus), °C 1150
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 37
43
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 42
2.4
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
1.5
Embodied Energy, MJ/kg 76
20
Embodied Water, L/kg 290
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
74 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 720
920 to 2590
Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
25 to 38
Strength to Weight: Bending, points 17
22 to 30
Thermal Diffusivity, mm2/s 10
12
Thermal Shock Resistance, points 20
20 to 32

Alloy Composition

Carbon (C), % 0 to 0.15
0.38 to 0.43
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 72.3 to 80.8
0
Iron (Fe), % 0.5 to 1.5
96.8 to 97.8
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0.75 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.5
0.15 to 0.35
Sulfur (S), % 0 to 0.020
0 to 0.040
Residuals, % 0 to 0.5
0