MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. C70620 Copper-nickel

Both C96300 copper-nickel and C70620 copper-nickel are copper alloys. They have 88% of their average alloy composition in common. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is C70620 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
120
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 49
46
Tensile Strength: Ultimate (UTS), MPa 580
300 to 570

Thermal Properties

Latent Heat of Fusion, J/g 230
220
Maximum Temperature: Mechanical, °C 240
220
Melting Completion (Liquidus), °C 1200
1120
Melting Onset (Solidus), °C 1150
1060
Specific Heat Capacity, J/kg-K 400
390
Thermal Conductivity, W/m-K 37
49
Thermal Expansion, µm/m-K 16
17

Otherwise Unclassified Properties

Base Metal Price, % relative 42
33
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 5.1
3.4
Embodied Energy, MJ/kg 76
51
Embodied Water, L/kg 290
300

Common Calculations

Stiffness to Weight: Axial, points 8.2
7.7
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 18
9.3 to 18
Strength to Weight: Bending, points 17
11 to 17
Thermal Diffusivity, mm2/s 10
14
Thermal Shock Resistance, points 20
10 to 20

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.050
Copper (Cu), % 72.3 to 80.8
86.5 to 90
Iron (Fe), % 0.5 to 1.5
1.0 to 1.8
Lead (Pb), % 0 to 0.010
0 to 0.020
Manganese (Mn), % 0.25 to 1.5
0 to 1.0
Nickel (Ni), % 18 to 22
9.0 to 11
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.2
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0 to 0.020
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5