MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. C90200 Bronze

Both C96300 copper-nickel and C90200 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 77% of their average alloy composition in common.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
70
Elastic (Young's, Tensile) Modulus, GPa 130
110
Elongation at Break, % 11
30
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 49
41
Tensile Strength: Ultimate (UTS), MPa 580
260
Tensile Strength: Yield (Proof), MPa 430
110

Thermal Properties

Latent Heat of Fusion, J/g 230
200
Maximum Temperature: Mechanical, °C 240
180
Melting Completion (Liquidus), °C 1200
1050
Melting Onset (Solidus), °C 1150
880
Specific Heat Capacity, J/kg-K 400
370
Thermal Conductivity, W/m-K 37
62
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
13
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
13

Otherwise Unclassified Properties

Base Metal Price, % relative 42
34
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 5.1
3.3
Embodied Energy, MJ/kg 76
53
Embodied Water, L/kg 290
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
63
Resilience: Unit (Modulus of Resilience), kJ/m3 720
55
Stiffness to Weight: Axial, points 8.2
7.0
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 18
8.3
Strength to Weight: Bending, points 17
10
Thermal Diffusivity, mm2/s 10
19
Thermal Shock Resistance, points 20
9.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.15
0
Copper (Cu), % 72.3 to 80.8
91 to 94
Iron (Fe), % 0.5 to 1.5
0 to 0.2
Lead (Pb), % 0 to 0.010
0 to 0.3
Manganese (Mn), % 0.25 to 1.5
0
Nickel (Ni), % 18 to 22
0 to 0.5
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.050
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.020
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6