MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. S30530 Stainless Steel

C96300 copper-nickel belongs to the copper alloys classification, while S30530 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is S30530 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
180
Elastic (Young's, Tensile) Modulus, GPa 130
200
Elongation at Break, % 11
46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 49
77
Tensile Strength: Ultimate (UTS), MPa 580
590
Tensile Strength: Yield (Proof), MPa 430
230

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 240
970
Melting Completion (Liquidus), °C 1200
1410
Melting Onset (Solidus), °C 1150
1370
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 37
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 42
18
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
3.4
Embodied Energy, MJ/kg 76
48
Embodied Water, L/kg 290
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
210
Resilience: Unit (Modulus of Resilience), kJ/m3 720
130
Stiffness to Weight: Axial, points 8.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18
21
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 10
4.1
Thermal Shock Resistance, points 20
13

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 0
17 to 20.5
Copper (Cu), % 72.3 to 80.8
0.75 to 3.5
Iron (Fe), % 0.5 to 1.5
58.4 to 72.5
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 18 to 22
8.5 to 11.5
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.5
0.5 to 2.5
Sulfur (S), % 0 to 0.020
0 to 0.030
Residuals, % 0 to 0.5
0