MakeItFrom.com
Menu (ESC)

C96400 Copper-nickel vs. S43037 Stainless Steel

C96400 copper-nickel belongs to the copper alloys classification, while S43037 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96400 copper-nickel and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 25
25
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 51
77
Tensile Strength: Ultimate (UTS), MPa 490
410
Tensile Strength: Yield (Proof), MPa 260
230

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 260
880
Melting Completion (Liquidus), °C 1240
1440
Melting Onset (Solidus), °C 1170
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 28
25
Thermal Expansion, µm/m-K 15
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 5.1
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 45
9.0
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 5.9
2.3
Embodied Energy, MJ/kg 87
32
Embodied Water, L/kg 280
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
88
Resilience: Unit (Modulus of Resilience), kJ/m3 250
130
Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15
15
Strength to Weight: Bending, points 16
16
Thermal Diffusivity, mm2/s 7.8
6.7
Thermal Shock Resistance, points 17
14

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 0
16 to 19
Copper (Cu), % 62.3 to 71.3
0
Iron (Fe), % 0.25 to 1.5
77.9 to 83.9
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 28 to 32
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0
0.1 to 1.0
Residuals, % 0 to 0.5
0