MakeItFrom.com
Menu (ESC)

C96600 Copper vs. AISI 317LM Stainless Steel

C96600 copper belongs to the copper alloys classification, while AISI 317LM stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C96600 copper and the bottom bar is AISI 317LM stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 7.0
46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 52
79
Tensile Strength: Ultimate (UTS), MPa 760
590
Tensile Strength: Yield (Proof), MPa 480
230

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 280
300
Melting Completion (Liquidus), °C 1180
1460
Melting Onset (Solidus), °C 1100
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 30
14
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 65
24
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 7.0
4.8
Embodied Energy, MJ/kg 100
65
Embodied Water, L/kg 280
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
210
Resilience: Unit (Modulus of Resilience), kJ/m3 830
130
Stiffness to Weight: Axial, points 8.7
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24
21
Strength to Weight: Bending, points 21
20
Thermal Diffusivity, mm2/s 8.4
3.8
Thermal Shock Resistance, points 25
13

Alloy Composition

Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 63.5 to 69.8
0
Iron (Fe), % 0.8 to 1.1
54.4 to 64.5
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 29 to 33
13.5 to 17.5
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0