MakeItFrom.com
Menu (ESC)

C96600 Copper vs. EN 1.4361 Stainless Steel

C96600 copper belongs to the copper alloys classification, while EN 1.4361 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96600 copper and the bottom bar is EN 1.4361 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 7.0
43
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 52
75
Tensile Strength: Ultimate (UTS), MPa 760
630
Tensile Strength: Yield (Proof), MPa 480
250

Thermal Properties

Latent Heat of Fusion, J/g 240
350
Maximum Temperature: Mechanical, °C 280
940
Melting Completion (Liquidus), °C 1180
1370
Melting Onset (Solidus), °C 1100
1330
Specific Heat Capacity, J/kg-K 400
490
Thermal Conductivity, W/m-K 30
14
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 65
19
Density, g/cm3 8.9
7.6
Embodied Carbon, kg CO2/kg material 7.0
3.6
Embodied Energy, MJ/kg 100
52
Embodied Water, L/kg 280
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
220
Resilience: Unit (Modulus of Resilience), kJ/m3 830
160
Stiffness to Weight: Axial, points 8.7
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24
23
Strength to Weight: Bending, points 21
21
Thermal Diffusivity, mm2/s 8.4
3.7
Thermal Shock Resistance, points 25
15

Alloy Composition

Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 63.5 to 69.8
0
Iron (Fe), % 0.8 to 1.1
58.7 to 65.8
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 29 to 33
14 to 16
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
3.7 to 4.5
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 0.5
0