MakeItFrom.com
Menu (ESC)

C96600 Copper vs. EN 1.4986 Stainless Steel

C96600 copper belongs to the copper alloys classification, while EN 1.4986 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96600 copper and the bottom bar is EN 1.4986 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 7.0
18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 52
77
Tensile Strength: Ultimate (UTS), MPa 760
750
Tensile Strength: Yield (Proof), MPa 480
560

Thermal Properties

Latent Heat of Fusion, J/g 240
290
Maximum Temperature: Mechanical, °C 280
940
Melting Completion (Liquidus), °C 1180
1450
Melting Onset (Solidus), °C 1100
1400
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 30
15
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 65
25
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 7.0
4.8
Embodied Energy, MJ/kg 100
67
Embodied Water, L/kg 280
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
120
Resilience: Unit (Modulus of Resilience), kJ/m3 830
790
Stiffness to Weight: Axial, points 8.7
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24
26
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 8.4
4.0
Thermal Shock Resistance, points 25
16

Alloy Composition

Beryllium (Be), % 0.4 to 0.7
0
Boron (B), % 0
0.050 to 0.1
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 63.5 to 69.8
0
Iron (Fe), % 0.8 to 1.1
59.4 to 66.6
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
1.6 to 2.0
Nickel (Ni), % 29 to 33
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.15
0.3 to 0.6
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0