MakeItFrom.com
Menu (ESC)

C96600 Copper vs. EN 1.6579 Steel

C96600 copper belongs to the copper alloys classification, while EN 1.6579 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96600 copper and the bottom bar is EN 1.6579 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 7.0
11 to 14
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 52
73
Tensile Strength: Ultimate (UTS), MPa 760
850 to 980
Tensile Strength: Yield (Proof), MPa 480
600 to 910

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 280
440
Melting Completion (Liquidus), °C 1180
1460
Melting Onset (Solidus), °C 1100
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 30
39
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.0
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 65
3.7
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 7.0
1.7
Embodied Energy, MJ/kg 100
22
Embodied Water, L/kg 280
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
100 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 830
950 to 2210
Stiffness to Weight: Axial, points 8.7
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24
30 to 35
Strength to Weight: Bending, points 21
25 to 28
Thermal Diffusivity, mm2/s 8.4
11
Thermal Shock Resistance, points 25
25 to 29

Alloy Composition

Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0.32 to 0.38
Chromium (Cr), % 0
1.4 to 1.7
Copper (Cu), % 63.5 to 69.8
0
Iron (Fe), % 0.8 to 1.1
94.2 to 96.1
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.0
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.35
Nickel (Ni), % 29 to 33
1.4 to 1.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0