MakeItFrom.com
Menu (ESC)

C96600 Copper vs. SAE-AISI 1005 Steel

C96600 copper belongs to the copper alloys classification, while SAE-AISI 1005 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C96600 copper and the bottom bar is SAE-AISI 1005 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 7.0
23
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 52
73
Tensile Strength: Ultimate (UTS), MPa 760
330
Tensile Strength: Yield (Proof), MPa 480
260

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 280
400
Melting Completion (Liquidus), °C 1180
1470
Melting Onset (Solidus), °C 1100
1430
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 30
53
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.0
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 65
1.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 7.0
1.4
Embodied Energy, MJ/kg 100
18
Embodied Water, L/kg 280
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
70
Resilience: Unit (Modulus of Resilience), kJ/m3 830
180
Stiffness to Weight: Axial, points 8.7
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24
12
Strength to Weight: Bending, points 21
13
Thermal Diffusivity, mm2/s 8.4
14
Thermal Shock Resistance, points 25
10

Alloy Composition

Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.060
Copper (Cu), % 63.5 to 69.8
0
Iron (Fe), % 0.8 to 1.1
99.5 to 100
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.0
0 to 0.35
Nickel (Ni), % 29 to 33
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0
Sulfur (S), % 0
0 to 0.050
Residuals, % 0 to 0.5
0