MakeItFrom.com
Menu (ESC)

C96600 Copper vs. S41003 Stainless Steel

C96600 copper belongs to the copper alloys classification, while S41003 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96600 copper and the bottom bar is S41003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 7.0
21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 52
76
Tensile Strength: Ultimate (UTS), MPa 760
520
Tensile Strength: Yield (Proof), MPa 480
310

Thermal Properties

Latent Heat of Fusion, J/g 240
270
Maximum Temperature: Mechanical, °C 280
720
Melting Completion (Liquidus), °C 1180
1440
Melting Onset (Solidus), °C 1100
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
27
Thermal Expansion, µm/m-K 15
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 65
7.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 7.0
1.9
Embodied Energy, MJ/kg 100
27
Embodied Water, L/kg 280
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
92
Resilience: Unit (Modulus of Resilience), kJ/m3 830
240
Stiffness to Weight: Axial, points 8.7
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 8.4
7.2
Thermal Shock Resistance, points 25
19

Alloy Composition

Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 63.5 to 69.8
0
Iron (Fe), % 0.8 to 1.1
83.4 to 89.5
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 29 to 33
0 to 1.5
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0