MakeItFrom.com
Menu (ESC)

C96700 Copper vs. 7108A Aluminum

C96700 copper belongs to the copper alloys classification, while 7108A aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C96700 copper and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
69
Elongation at Break, % 10
11 to 13
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 53
26
Tensile Strength: Ultimate (UTS), MPa 1210
350
Tensile Strength: Yield (Proof), MPa 550
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 250
380
Maximum Temperature: Mechanical, °C 310
210
Melting Completion (Liquidus), °C 1170
630
Melting Onset (Solidus), °C 1110
520
Specific Heat Capacity, J/kg-K 400
870
Thermal Conductivity, W/m-K 30
150
Thermal Expansion, µm/m-K 15
24

Otherwise Unclassified Properties

Base Metal Price, % relative 90
10
Density, g/cm3 8.8
2.9
Embodied Carbon, kg CO2/kg material 9.5
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 280
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
38 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
610 to 640
Stiffness to Weight: Axial, points 8.9
13
Stiffness to Weight: Bending, points 20
47
Strength to Weight: Axial, points 38
33 to 34
Strength to Weight: Bending, points 29
38
Thermal Diffusivity, mm2/s 8.5
59
Thermal Shock Resistance, points 40
15 to 16

Alloy Composition

Aluminum (Al), % 0
91.6 to 94.4
Beryllium (Be), % 1.1 to 1.2
0
Chromium (Cr), % 0
0 to 0.040
Copper (Cu), % 62.4 to 68.8
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0.4 to 1.0
0 to 0.3
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0
0.7 to 1.5
Manganese (Mn), % 0.4 to 1.0
0 to 0.050
Nickel (Ni), % 29 to 33
0
Silicon (Si), % 0 to 0.15
0 to 0.2
Titanium (Ti), % 0.15 to 0.35
0 to 0.030
Zinc (Zn), % 0
4.8 to 5.8
Zirconium (Zr), % 0.15 to 0.35
0.15 to 0.25
Residuals, % 0
0 to 0.15