MakeItFrom.com
Menu (ESC)

C96700 Copper vs. AISI 301 Stainless Steel

C96700 copper belongs to the copper alloys classification, while AISI 301 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is AISI 301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 10
7.4 to 46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 53
77
Tensile Strength: Ultimate (UTS), MPa 1210
590 to 1460
Tensile Strength: Yield (Proof), MPa 550
230 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 310
840
Melting Completion (Liquidus), °C 1170
1420
Melting Onset (Solidus), °C 1110
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
16
Thermal Expansion, µm/m-K 15
17

Otherwise Unclassified Properties

Base Metal Price, % relative 90
13
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 9.5
2.7
Embodied Energy, MJ/kg 140
39
Embodied Water, L/kg 280
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
99 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
130 to 2970
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
21 to 52
Strength to Weight: Bending, points 29
20 to 37
Thermal Diffusivity, mm2/s 8.5
4.2
Thermal Shock Resistance, points 40
12 to 31

Alloy Composition

Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
70.7 to 78
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Nickel (Ni), % 29 to 33
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0