MakeItFrom.com
Menu (ESC)

C96700 Copper vs. AISI 301LN Stainless Steel

C96700 copper belongs to the copper alloys classification, while AISI 301LN stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 10
23 to 51
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 53
77
Tensile Strength: Ultimate (UTS), MPa 1210
630 to 1060
Tensile Strength: Yield (Proof), MPa 550
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 310
890
Melting Completion (Liquidus), °C 1170
1430
Melting Onset (Solidus), °C 1110
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
15
Thermal Expansion, µm/m-K 15
16

Otherwise Unclassified Properties

Base Metal Price, % relative 90
13
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 9.5
2.7
Embodied Energy, MJ/kg 140
39
Embodied Water, L/kg 280
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
180 to 1520
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
22 to 38
Strength to Weight: Bending, points 29
21 to 30
Thermal Diffusivity, mm2/s 8.5
4.0
Thermal Shock Resistance, points 40
14 to 24

Alloy Composition

Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
70.7 to 77.9
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Nickel (Ni), % 29 to 33
6.0 to 8.0
Nitrogen (N), % 0
0.070 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0