MakeItFrom.com
Menu (ESC)

C96700 Copper vs. AISI 316N Stainless Steel

C96700 copper belongs to the copper alloys classification, while AISI 316N stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is AISI 316N stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 10
9.0 to 39
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 53
78
Tensile Strength: Ultimate (UTS), MPa 1210
620 to 1160
Tensile Strength: Yield (Proof), MPa 550
270 to 870

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 310
940
Melting Completion (Liquidus), °C 1170
1440
Melting Onset (Solidus), °C 1110
1400
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 30
15
Thermal Expansion, µm/m-K 15
16

Otherwise Unclassified Properties

Base Metal Price, % relative 90
19
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 9.5
3.9
Embodied Energy, MJ/kg 140
53
Embodied Water, L/kg 280
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
95 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
180 to 1880
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
22 to 41
Strength to Weight: Bending, points 29
20 to 31
Thermal Diffusivity, mm2/s 8.5
4.1
Thermal Shock Resistance, points 40
14 to 26

Alloy Composition

Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
61.9 to 71.9
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 29 to 33
10 to 14
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0