MakeItFrom.com
Menu (ESC)

C96700 Copper vs. EN 1.4313 Stainless Steel

C96700 copper belongs to the copper alloys classification, while EN 1.4313 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is EN 1.4313 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 10
12 to 17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 53
76
Tensile Strength: Ultimate (UTS), MPa 1210
750 to 1000
Tensile Strength: Yield (Proof), MPa 550
580 to 910

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 310
780
Melting Completion (Liquidus), °C 1170
1450
Melting Onset (Solidus), °C 1110
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
25
Thermal Expansion, µm/m-K 15
10

Otherwise Unclassified Properties

Base Metal Price, % relative 90
10
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 9.5
2.4
Embodied Energy, MJ/kg 140
34
Embodied Water, L/kg 280
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
870 to 2100
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
27 to 36
Strength to Weight: Bending, points 29
23 to 28
Thermal Diffusivity, mm2/s 8.5
6.7
Thermal Shock Resistance, points 40
27 to 36

Alloy Composition

Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
78.5 to 84.2
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
0.3 to 0.7
Nickel (Ni), % 29 to 33
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0