MakeItFrom.com
Menu (ESC)

C96700 Copper vs. EN 1.4568 Stainless Steel

C96700 copper belongs to the copper alloys classification, while EN 1.4568 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is EN 1.4568 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 10
2.3 to 21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 53
76
Tensile Strength: Ultimate (UTS), MPa 1210
830 to 1620
Tensile Strength: Yield (Proof), MPa 550
330 to 1490

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 310
890
Melting Completion (Liquidus), °C 1170
1420
Melting Onset (Solidus), °C 1110
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
16
Thermal Expansion, µm/m-K 15
13

Otherwise Unclassified Properties

Base Metal Price, % relative 90
13
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 9.5
2.8
Embodied Energy, MJ/kg 140
40
Embodied Water, L/kg 280
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
36 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
290 to 5710
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
30 to 58
Strength to Weight: Bending, points 29
25 to 40
Thermal Diffusivity, mm2/s 8.5
4.3
Thermal Shock Resistance, points 40
23 to 46

Alloy Composition

Aluminum (Al), % 0
0.7 to 1.5
Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
70.9 to 76.8
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Nickel (Ni), % 29 to 33
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0