MakeItFrom.com
Menu (ESC)

C96700 Copper vs. EN 1.4597 Stainless Steel

C96700 copper belongs to the copper alloys classification, while EN 1.4597 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is EN 1.4597 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 10
45
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 53
76
Tensile Strength: Ultimate (UTS), MPa 1210
680
Tensile Strength: Yield (Proof), MPa 550
330

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 310
860
Melting Completion (Liquidus), °C 1170
1400
Melting Onset (Solidus), °C 1110
1350
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
15
Thermal Expansion, µm/m-K 15
17

Otherwise Unclassified Properties

Base Metal Price, % relative 90
11
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 9.5
2.5
Embodied Energy, MJ/kg 140
36
Embodied Water, L/kg 280
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
250
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
280
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
25
Strength to Weight: Bending, points 29
22
Thermal Diffusivity, mm2/s 8.5
4.1
Thermal Shock Resistance, points 40
15

Alloy Composition

Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
15 to 18
Copper (Cu), % 62.4 to 68.8
2.0 to 3.5
Iron (Fe), % 0.4 to 1.0
63 to 76.4
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
6.5 to 9.0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 29 to 33
0 to 3.0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0