MakeItFrom.com
Menu (ESC)

C96700 Copper vs. EN 1.6220 Steel

C96700 copper belongs to the copper alloys classification, while EN 1.6220 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is EN 1.6220 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 10
23 to 25
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 53
73
Tensile Strength: Ultimate (UTS), MPa 1210
550 to 580
Tensile Strength: Yield (Proof), MPa 550
340

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 310
400
Melting Completion (Liquidus), °C 1170
1460
Melting Onset (Solidus), °C 1110
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 30
52
Thermal Expansion, µm/m-K 15
13

Otherwise Unclassified Properties

Base Metal Price, % relative 90
2.1
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 9.5
1.5
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 280
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
300 to 310
Stiffness to Weight: Axial, points 8.9
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 38
19 to 20
Strength to Weight: Bending, points 29
19 to 20
Thermal Diffusivity, mm2/s 8.5
14
Thermal Shock Resistance, points 40
16 to 17

Alloy Composition

Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0.17 to 0.23
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
96.7 to 98.8
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
1.0 to 1.6
Nickel (Ni), % 29 to 33
0 to 0.8
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.15
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0