MakeItFrom.com
Menu (ESC)

C96700 Copper vs. SAE-AISI 1019 Steel

C96700 copper belongs to the copper alloys classification, while SAE-AISI 1019 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is SAE-AISI 1019 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 10
17 to 29
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 53
73
Tensile Strength: Ultimate (UTS), MPa 1210
470 to 520
Tensile Strength: Yield (Proof), MPa 550
250 to 430

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 310
400
Melting Completion (Liquidus), °C 1170
1460
Melting Onset (Solidus), °C 1110
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 30
52
Thermal Expansion, µm/m-K 15
12

Otherwise Unclassified Properties

Base Metal Price, % relative 90
1.8
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 9.5
1.4
Embodied Energy, MJ/kg 140
18
Embodied Water, L/kg 280
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
82 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
160 to 500
Stiffness to Weight: Axial, points 8.9
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 38
17 to 18
Strength to Weight: Bending, points 29
17 to 18
Thermal Diffusivity, mm2/s 8.5
14
Thermal Shock Resistance, points 40
15 to 16

Alloy Composition

Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0.15 to 0.2
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
98.7 to 99.15
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0.7 to 1.0
Nickel (Ni), % 29 to 33
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0