MakeItFrom.com
Menu (ESC)

C96700 Copper vs. C11100 Copper

Both C96700 copper and C11100 copper are copper alloys. They have 66% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is C11100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
120
Elongation at Break, % 10
1.5
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 53
44
Tensile Strength: Ultimate (UTS), MPa 1210
460
Tensile Strength: Yield (Proof), MPa 550
420

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 310
200
Melting Completion (Liquidus), °C 1170
1080
Melting Onset (Solidus), °C 1110
1070
Specific Heat Capacity, J/kg-K 400
390
Thermal Conductivity, W/m-K 30
390
Thermal Expansion, µm/m-K 15
17

Otherwise Unclassified Properties

Base Metal Price, % relative 90
31
Density, g/cm3 8.8
9.0
Embodied Carbon, kg CO2/kg material 9.5
2.6
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 280
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
6.6
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
750
Stiffness to Weight: Axial, points 8.9
7.2
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 38
14
Strength to Weight: Bending, points 29
15
Thermal Diffusivity, mm2/s 8.5
110
Thermal Shock Resistance, points 40
16

Alloy Composition

Beryllium (Be), % 1.1 to 1.2
0
Copper (Cu), % 62.4 to 68.8
99.9 to 100
Iron (Fe), % 0.4 to 1.0
0
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0
Nickel (Ni), % 29 to 33
0
Silicon (Si), % 0 to 0.15
0
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0
0 to 0.1