MakeItFrom.com
Menu (ESC)

C96700 Copper vs. S31100 Stainless Steel

C96700 copper belongs to the copper alloys classification, while S31100 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 10
4.5
Poisson's Ratio 0.33
0.27
Rockwell C Hardness 26
28
Shear Modulus, GPa 53
79
Tensile Strength: Ultimate (UTS), MPa 1210
1000
Tensile Strength: Yield (Proof), MPa 550
710

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 1170
1420
Melting Onset (Solidus), °C 1110
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
16
Thermal Expansion, µm/m-K 15
13

Otherwise Unclassified Properties

Base Metal Price, % relative 90
16
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 9.5
3.1
Embodied Energy, MJ/kg 140
44
Embodied Water, L/kg 280
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
40
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
1240
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
36
Strength to Weight: Bending, points 29
29
Thermal Diffusivity, mm2/s 8.5
4.2
Thermal Shock Resistance, points 40
28

Alloy Composition

Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
25 to 27
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
63.6 to 69
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Nickel (Ni), % 29 to 33
6.0 to 7.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.35
0 to 0.25
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0