MakeItFrom.com
Menu (ESC)

C96700 Copper vs. S31730 Stainless Steel

C96700 copper belongs to the copper alloys classification, while S31730 stainless steel belongs to the iron alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is S31730 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 10
40
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 53
77
Tensile Strength: Ultimate (UTS), MPa 1210
540
Tensile Strength: Yield (Proof), MPa 550
200

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 310
990
Melting Completion (Liquidus), °C 1170
1430
Melting Onset (Solidus), °C 1110
1390
Specific Heat Capacity, J/kg-K 400
470
Thermal Expansion, µm/m-K 15
16

Otherwise Unclassified Properties

Base Metal Price, % relative 90
24
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 9.5
4.6
Embodied Energy, MJ/kg 140
63
Embodied Water, L/kg 280
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
99
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 38
19
Strength to Weight: Bending, points 29
18
Thermal Shock Resistance, points 40
12

Alloy Composition

Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 62.4 to 68.8
4.0 to 5.0
Iron (Fe), % 0.4 to 1.0
52.4 to 61
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 29 to 33
15 to 16.5
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0