MakeItFrom.com
Menu (ESC)

C96700 Copper vs. S32803 Stainless Steel

C96700 copper belongs to the copper alloys classification, while S32803 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is S32803 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
210
Elongation at Break, % 10
18
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 53
81
Tensile Strength: Ultimate (UTS), MPa 1210
680
Tensile Strength: Yield (Proof), MPa 550
560

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 1170
1450
Melting Onset (Solidus), °C 1110
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
16
Thermal Expansion, µm/m-K 15
11

Otherwise Unclassified Properties

Base Metal Price, % relative 90
19
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 9.5
3.7
Embodied Energy, MJ/kg 140
53
Embodied Water, L/kg 280
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
760
Stiffness to Weight: Axial, points 8.9
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
25
Strength to Weight: Bending, points 29
22
Thermal Diffusivity, mm2/s 8.5
4.4
Thermal Shock Resistance, points 40
22

Alloy Composition

Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
28 to 29
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
62.9 to 67.1
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 0.5
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 29 to 33
3.0 to 4.0
Niobium (Nb), % 0
0.15 to 0.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.15
0 to 0.55
Sulfur (S), % 0
0 to 0.0035
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0