MakeItFrom.com
Menu (ESC)

C96700 Copper vs. S35315 Stainless Steel

C96700 copper belongs to the copper alloys classification, while S35315 stainless steel belongs to the iron alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 10
46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 53
78
Tensile Strength: Ultimate (UTS), MPa 1210
740
Tensile Strength: Yield (Proof), MPa 550
300

Thermal Properties

Latent Heat of Fusion, J/g 250
330
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 1170
1370
Melting Onset (Solidus), °C 1110
1330
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
12
Thermal Expansion, µm/m-K 15
16

Otherwise Unclassified Properties

Base Metal Price, % relative 90
34
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 9.5
5.7
Embodied Energy, MJ/kg 140
81
Embodied Water, L/kg 280
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
270
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
230
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
26
Strength to Weight: Bending, points 29
23
Thermal Diffusivity, mm2/s 8.5
3.1
Thermal Shock Resistance, points 40
17

Alloy Composition

Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
33.6 to 40.6
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Nickel (Ni), % 29 to 33
34 to 36
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
1.2 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0